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Abstract. This paper examines the effects of using validation data accuracy as
an additional objective in multiobjective fuzzy genetics-based machine learning
(MoFGBML). The MoFGBML algorithm uses an evolutionary multiobjective
optimization algorithm (EMOA) to maximize the training data accuracy and
minimize the classifier complexity in the design of fuzzy rule-based classifiers.
During the optimization process, the classifiers generated through MoFGBML may
become overfitted to the training data. We show that using validation data accuracy
as an additional objective in MoFGBML provides much more non-dominated
classifiers while increasing the generalization ability of the obtained classifiers.
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1 Introduction

In finance and healthcare industries where trust is of utmost importance, understanding
how results are obtained is fundamental to their success [1]. Current black-box models
do not have the necessary degree of interpretability required for these types of tasks.
Furthermore, this lack of understanding prevents us from tuning the models to our
preferences. One solution to this problem is to use fuzzy rule-based classifiers. These
classifiers use several linguistic fuzzy if-then rules to classify the input patterns. They
are easy to interpret and can clearly describe how the model classifies each pattern [2].
Since fuzzy rules in a classifier represent classification boundaries, a large number of
rules are often required to obtain a high degree of accuracy. Correspondingly, a fuzzy
classifier with a small number of rules tends to have a low degree of accuracy whereas it
is easy to interpret. This is known as the interpretability-accuracy trade-off [3].
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To deal with the interpretability-accuracy trade-off, a multiobjective fuzzy genetics-
based machine learning (MoFGBML) algorithm was proposed [3]. In MoFGBML, fuzzy
classifiers are optimized by formulating a multiobjective optimization problem. By
using an evolutionary multiobjective optimization algorithm (EMOA), MoFGBML can
generate a wide variety of non-dominated fuzzy classifiers along the interpretability-
accuracy trade-off surface.

Due to the nature of machine learning, during the search for more accurate classifiers
with the training data, a certain degree of overfitting may occur. For the highly accurate
classifiers generated through MoFGBML, this bias may cause the expected error rate
for the test data to be significantly worse. In this paper, we improve the generalization
ability of MoFGBML by using validation data accuracy as an additional objective. In
computational experiments, we show that the classifiers generated through this new
formulation are more accurate and have higher generalization ability.

This paper is organized as follows: Section 2 briefly explains fuzzy classifiers and the
original problem formulation of MoFGBML. Section 3 explains our proposed formula-
tion which uses validation data accuracy as an additional objective in MoFGBML. In
Section 4, we explain computational experiments and compare the proposed formulation
with the original formulation. Lastly, Section 5 has some concluding remarks as well as
future research directions to conduct.

2 Multi-objective Fuzzy Genetics-based Machine Learning
2.1 Fuzzy Rules

We can generate fuzzy if-then rules which are true to a certain degree for a certain
number of patterns. These fuzzy if-then rules are represented as follows:

Rule R : If x1 is A1 and ... and xn is An then Class C with CF, (1)

where x = (x1,..., xn) is a pattern composed of n attributes, A is the antecedent fuzzy set
A = (A1,..., An), C is the corresponding consequent class, and CF is the corresponding
rule weight. By combining different rules into a rule set S, we can build a classifier with
high classification accuracy and high interpretability.

2.2 Fuzzy Classifiers
There are two main approaches in genetics-based machine learning (GBML): Michi-

gan and Pittsburgh approaches. The Michigan approach uses each rule as an individual
and the set of rules as a population. The Pittsburgh approach uses a rule set as an
individual and a number of rule sets as a population. Considering the benefits of both
approaches, MoFGBML implements a hybrid approach.

In MoFGBML, we follow the Pittsburgh approach and use fuzzy rule sets as indi-
viduals which are evolved through genetic operations to generate better rule sets. We
also randomly use Michigan-style genetic operations as local search with a prespecified
probability (0.5 in this paper). Our goal is to generate as many non-dominated classifiers
as possible. A classifier is considered non-dominated when none of its objective func-
tions can be improved without degrading the others. Due to the interpretability-accuracy
trade-off, it is impossible to obtain a classifier which is both easy to interpret and highly
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accurate [3]. For this reason, we formulate the design of fuzzy classifiers as a multi-
objective optimization problem (MOP). Consequently, we use an EMOA to generate
fuzzy classifiers. In this study, we apply NSGA-II [4] which achieves both diversity and
performance through the evolution process.

2.3 Original Problem Formulation: MOP1
The original multiobjective optimization problem (MOP1) uses two objective func-

tions, which take in a rule set S as an input. The first objective function f 1(S) is the error
rate against the training data while the second objective function f 2(S) is the number of
rules in the classifier. Therefore, we can define MOP1 as: minimize the error rate for
the training data f 1(S), and minimize the number of rules in the classifier f 2(S).

3 Use of Validation Data Accuracy
3.1 New Problem Formulation: MOP2

In general, validation data is used in some machine learning algorithms to monitor
the learning process. It is generally used to prevent the classifier from overfitting to the
training data. Our implementation introduces validation data by dividing the training
data into validation data and subtraining data. We then execute our algorithm with the
subtraining data where the validation data accuracy is used as an additional objective in
the EMOA (i.e., in NSGA-II).

Using validation data and subtraining data, we obtain two new objective functions
which can be used to formulate a new three-objective optimization problem (MOP2).
These are f 3(S) which is the error rate against the subtraining data and f 4(S) which is the
error rate against the validation data. We can define MOP2 as: minimize the number
of rules in the classifier (f 2(S)), minimize the error rate for the subtraining data ( f 3(S)),
and minimize the error rate for the validation data (f 4(S)).

3.2 Algorithm
We first perform cross-validation which divides the data into training data and test

data. After data partitioning is completed our algorithm executes as follows:

Step 1: Divide training data into subtraining data and validation data according to a
predetermined validation rate r.

Step 2: Generate an initial population of N rule sets where N is the population size.
Step 3: Generate an offspring population by iterating the following procedure N times.

1. Select a pair of parent rule sets from the current population using binary
tournament selection.

2. Randomly select a Pittsburgh-style or Michigan-style approach to generate
the offspring.

(a) If Pittsburgh-style is selected, generate an offspring from the selected
pair of parent rule sets by using crossover and mutation operations

(b) If Michigan-style is selected, apply a single iteration of Michigan-
style GBML to one of the parents.
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Step 4: Evaluate the offspring population.
Step 5: Merge the offspring population with the current population.
Step 6: Perform the non-dominated sorting and crowding distance calculation in the

merged population.
Step 7: Select the best N individuals from the merged population based on the rank and

crowding distance to generate the next population.
Step 8: If the stopping condition is satisfied, stop the algorithm and obtain the non-

dominated rule sets as the final solutions. Otherwise return to Step 2.

Before dividing the training data, we specify a validation rate r which is the ratio of
training data allocated for validation data. In addition, we make sure that the ratio of
classes in the subtraining data is proportional to that of classes in the validation data.

4 Computational Experiments
4.1 Experiment Settings

We perform computational experiments with MOP2 as well as MOP1 to compare
and assess the generalization ability of the classifiers obtained through MoFGBML. We
attempt these experiments with seven different validation rates. The experiment settings
are as follows.

• Number of Trials: 30 (10-fold cross-validation × 3)
• Stopping Condition: 10,000 generations
• Population Size: 60
• EMOA: NSGA-II
• Validation Rates: 0.1, 0.2, 0.3, 0.5, 0.7, 0.8, 0.9

We use 20 datasets obtained from the UCI machine learning repository. The datasets
are shown in Table 1.

4.2 Experiment Results
Because of the page limitation we only show the results for the 0.5 validation rate.

Table 1 shows that the average error rate against the test data from the best classifiers with
respect to the training data for both MOP1 and MOP2 as well as the average number of
rules in the classifiers. Since we ran 10-fold cross-validation three times, we obtained
the best classifier with respect to the training data for each trial and averaged the results
over 30 trials. We can clearly see that MOP2 obtains classifiers with a lower error rate
for most datasets. On the other hand, MOP1 has classifiers which have a smaller number
of rules than MOP2. To verify the statistical significance of the obtained results, we
perform the Wilcoxon signed rank test [5] with the significance level 0.05 to test the null
hypothesis that the test data error rate between both formulations are statistically equal.
In this experiment, the obtained results are treated as statistically significant since the p
value of the statistical test shows 0.00554.

Furthermore, we analyze the results by collecting all the classifiers for each specific
number of rules and plotting their mean. We plot the number of rules which have more
than 15 classifiers considered in their mean. Figure 1 shows the results for the Spambase
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Table 1. Dataset information and experiment results

Datasets Statistics of dataset Error rate
for test data (%) Number of rules

Pattern Attribute Class MOP1 MOP2 MOP1 MOP2
Iris 150 4 3 5.78 5.56 4.43 4.37

Wine 178 13 3 5.83 5.81 3.63 3.43
Sonar 208 60 2 23.40 21.04 10.33 10.80

Newthyroid 215 5 3 7.27 5.71 5.73 5.67
Australian 690 14 2 13.48 14.25 11.13 19.30

Pima 768 8 2 24.13 23.65 16.30 31.20
Vehicle 846 18 4 29.24 29.00 17.50 36.00
Yeast 1,484 8 10 41.78 40.79 22.20 36.50

Segment 2,310 19 7 7.59 6.38 15.47 22.57
Spambase 4,597 57 2 10.44 9.00 19.40 33.43
Phoneme 5,404 5 2 15.50 15.19 23.57 41.23

Page-blocks 5,472 10 5 3.65 3.46 13.33 16.27
Texture 5,500 40 11 8.70 6.14 17.87 35.43

Satimage 6,435 36 6 15.19 15.17 19.97 40.20
Twonorm 7,400 20 2 3.61 4.16 18.87 39.30

Ring 7,400 20 2 4.31 4.72 24.47 44.70
Penbased 10,992 16 10 4.65 4.55 42.30 49.07

Magic 19,020 10 2 15.27 15.05 19.90 40.93
Letter 20,000 16 26 41.97 40.43 37.97 43.00
Shuttle 57,999 9 7 0.47 0.49 9.33 9.87

dataset and the Texture dataset. Figure 1 shows that MOP2 generates more classifiers
than MOP1. One of the reasons for this could be that MOP2 is a three-objective problem
which allows us to generate more non-dominated classifiers than MOP1. We observe
that MOP2 performs better than MOP1 for most number of rules. Focusing on the
classifiers with 5-15 rules of the Spambase dataset in Figure 1 (a), MOP2 shows a lower
test data error rate than that of MOP1. Moreover, it also shows that the training data error
rate for MOP2 to be similar to MOP1. Since the difference in the error rates between
the training data and the test data is decreased for MOP2, the generalization ability of
the classifiers is improved. We can notice in Figure 1 (b), for the Texture dataset, both the
training data error and test data error rates for MOP2 outperform those of MOP1. This
shows not only an improvement in generalization ability but in classification accuracy as
well.

5 Conclusion

This paper proposed the use of validation data accuracy as an additional objective
in MoFGBML to increase the generalization ability of the obtained classifiers. We
demonstrated that this proposal leads to the generation of more accurate classifiers and
increases the number of non-dominated classifiers in the population. This may come
at the cost of an increased number of rules for the most accurate classifiers in MOP2.
Nevertheless, the classifiers with the same number of rules obtained through MOP2
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(a) Spambase, r = 0.5 (b) Texture, r = 0.5

Fig. 1. 30-trial average of classifiers for each number of rules

are more accurate and less overfitted than the classifiers obtained through MOP1. This
indicates that the new formulation improves the generalization ability of the classifiers
generated through MoFGBML. As a future research topic, we will further investigate
the effects of different validation rates to understand how it affects MoFGBML.
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